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NOTE

A Weak Formulation of Roe’s Approximate Riemann Solver
Applied to the St. Venant Equations

L. INTRODUCTION

Recently Toumi [1] presented a weak formulation of Roe’s
approximate Riemann solver based on a definition of a noncon-
servative product. Toumi first identifies the Lipschitz continu-
ous path connecting two states that leads to the Roe-averaged
state [2] for an ideal gas and then constructs a generalised Roe-
averaged matrix for the Euler equations for real gases by using
the same path. The purpose of this paper is to show that em-
ploying the ideas presented in [1} to the shallow water equations
leads to the approximate Riemann solver given in [3].

2. SHALLOW WATER FLOWS

The one-dimensional shallow water equations can be writ-
teén as

u +f =0, (2.1)

where

u = (p, pu)’ (2.2)

and

f=(pu,ip+ pu?)t. (2.3)
The quantities (p, u) = (p, u)(x, 1) represent the non-dimen-
sional height and velocity at a general position x in space and
at time ¢, Equations (2.1)—(2.3) are sometimes referred to as
the St. Venant equations.

3. AN APPROXIMATE RIEMANN SOLVER
(WEAK FORMULATION)

In [1] it is proposed that we solve equations of the form
{2.1) via locally linearised Riemann problems

u, + A, ugeu, =0 (3.1)

u, ifx <0
u(x, 0) =

32
u, ifx>0, G2

where A{u,, up)e is a constant matrix which depends on the
data (u,, uz) and on the path ®(s; u,, ug), and which satisfies

o
jl A(D(s; g, ug)) 6_ (85 g, ug) ds = A(u, uple (U — ;)
o as (3.3)

A(u, u)p = A(u) 34
and
has real eigenvalues and a
Al U)o complete set of eigenvectors’ (3.5
where

A = df/du

is the Jacobian of f. (N.B. This also applies to nonconservative
systems of the form u, + A{uwu, = 0. However, when the
system is conservative, as is the case here, (3.3) 15 equivalent
to the condition f(ug) — fug) = AU, ug)e (Uz — uy), which
was originally proposed by Roe [2].)
As noted by Roe [2], the canonical path (a straight line)
linking u; and ug,
D(simg, we), = ug + s(ug — wy),

sef0, 11, (3.6)

gives

Az udo = [ A0 + stue —uds,  (37)

which will, in general, involve integrals which may not emerge
in closed form, or the closed form may be expensive to compute.
The alternative approach adopted by Roe is to introduce a
parameter vector w, and it is shown in [1] that the choice of
the canonical path for w leads to Roe’s original scheme for
the Euler equations with ideal gases 12). This choice is then
employed in the case of real gases to lead to a new scheme [1].

The Riemann solver in [1] is construcied by letting €, be a
smooth function such that fy(w,) = w,, fi(wz) = ug, and
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Ay(w) = afy/dw is a regular matrix for every state w. The path
chosen linking the two states u; and a5 is then
D (s: ug, ug) = fu(w, + s(we — W), (3.8)

and this leads to the Roe matrix

A, U)o, = CUL, Wyo, B, Wp)a,, (3.9
where
Blug, wida, = [ Ay (w, + sty —w)y s (3.10)
and
Cluy, Uy)e,

= [ AW + 509 = wAw + swe = D) s (BAD)

which satisfies (3.3)—(3.5).

Our aim now is to show that the application of this Riemann
solver to the equations of flow in Section 2 leads to the Riemann
solver given in [3].

4. APPLICATION TO SHALLOW WATER FLOWS
For Egs. (2.1)—(2.3), with parameter vector

(4.1)

w = (w, wp)" = (Vp, Vpu,
then
£(w) = u = { p, pu)T = (Wi, wyw,)T, (4.2
so that
afﬂ 2W! 0
0= 6_ = . 4.3)
w Wy L

From (3.10) and (4.3)
1
Blug, uda, = [ Adtw, + s(we - w) ds

2w, 0 (4.4)

where the overbar denotes the arithmetic mean of left and right
states, W = 3w, + wg). To construct the matrix C(u,, Up e,
(having found B(u;, Ug)e ), and hence A(u;, ug)e,, it is necessary
to write the Jacobian

P. GLAISTER

0 1
A= it _ , {4.5)
du p—u u
as a function of w;
0 1
Aaw)=| , wp 2w | (4.6)
Wy — _2 —
L Wy
Combining (4.3) and (4.6) gives
w, W,
A(u(w)) Ag(w) = ) , 4.7}
Wy ZWZ

so that from (3.11),

Clug, we)e, = J;A(fo(wr. + s(we — WP AWy + s(Wy — W, )) ds
WZ W| (4.8)
2 2 |

where again W = § (W, + w;) denotes the arithmetic mean and
wi is an approximation to wi given by

1
w = fo (wi + s(wy, — wy ) ds

w‘,‘R - w‘fL
e, mwyy T @9
wi (=wi)  ifw, =w, (4.9b)

However, since
44 _ 3 2 2 3
wi, —wi = (w = w )Wl +wiwy, +owywi +owi), (4.10)

then (4.9a) and (4.9b) become

wi = 3wl + wiwy + wiwi + wi). .10

Combining (4.4), (4.8), and (4.11), we find that the matrix in
(3.9} for the system of equations under consideration here is

Alu,, uﬂ)sha = Clug, ugle, B(u,, “R)‘;’ol
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0 1
W Wwiow

Thus, since

E=\/-I;RHR+\/;LHL:ﬁ

W \/;R + \/;L

say, and

= -
wi =30, + wiwy, +wiowt i) = 3w, +ow )l +wl)

= Wl;%
then
0 1
AU, Ugly, = (5 ps 2&)’
where

}3 = %( ot PR) = %(W%L + W%R)s

again denotes the arithmetic mean, which is precisely the Roe
matrix given in [3], and clearly represents an approximation to
the Jacobian (4.5).

CONCLUSIONS

We have demonstrated that the Riemann solver proposed by
Toumi [1], when applied to the St. Venant equations represent-
ing shaliow water flows, results in the Riemann solver given
by Glaister [3].
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